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Fluid flow induced by a rapidly alternating 
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(Received 21 September 1977 and in revised form 10 February 1978) 

This paper studies the effect of alternating or rotating magnetic fields on containers 
of conducting fluid. The magnetic Reynolds number is assumed small. The frequency 
of alternation or rotation is rapid so the magnetic field is confined to a thin layer on the 
surface of the container. A boundary-layer analysis is used to  find the rate of vorticity 
generation due to the Lorentz force. When the container is an infinitely long cylinder 
of uniform cross-section, alternating fields normal to the generators or fields rotating 
about an axis parallel to the generators generate vorticity a t  a constant rate. For 
containers of any other shape the rate of vorticity generation includes both constant 
and oscillatory terms. A perturbation analysis is used to study the flow induced in a 
slightly distorted circular cylinder by a rotating field. Complex flows develop in the 
viscous-magnetic boundary layer which may be unstable. 

1. Introduction 
The effect of a rotating magnetic field on a container of liquid metal has useful 

industrial applications, for example centrifuging to  remove impurities or stirring of 
castings. Moffatt (1965) studied the effect of a rotating magnetic field on an infinitely 
long circular cylinder of conducting fluid. He assumed a low magnetic Reynolds num- 
ber and found an exact expression for the magnetic field in terms of Bessel functions. 
Under the assumption that the field was rotating rapidly (compared with the magnetic 
diffusion time of the cylinder) the Bessel functions could be replaced by their large 
argument asymptotic expansions and a simpler expression derived for the magnetic 
field. It was found that the rate of vorticity generation by the Lorentz force V x (j x B) 
was independent of time, and that this steady vorticity source produced a rigid-body 
rotation in the interior of the cylinder inside a viscous-magnetic boundary layer. 
Moffatt also made some conjectures about the effect of a rotating magnetic field on 
non-circular cylinders, which are examined in this paper. 

Moffatt's work has been extended by other authors. Sneyd (1971) considered a 
circular cylinder in an alternating field. Nigam (1969) examined a spherical container 
of conducting fluid in a rotating magnetic field. His analysis is identical with Moffatt's 
(an exact Bessel-function solution for the field followed by asymptotic expansion) 
but there is a mistake in his paper which invalidates the conclusions. Dahlberg (1972) 
showed that the rate of vorticity generation in a circular cylinder was steady for all 
rotation rates of the magnetic field, and derived a general solution for the velocity 
field. The stability of this solution in the case of a slowly rotating field has been 
examined by Richardson (1974), who concluded that instability would occur for very 
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small magnetic field strengths. A concise summary of these developments has been 
given by Moffatt (1978). 

This paper examines the effect of alternating and rotating magnetic fields on con- 
tainers of arbitrary shape. In  § 2 a boundary-layer technique is used to find V x (j x B) 
for an alternating field. It turns out that this is steady for infinitely long cylinders of 
arbitrary cross-section but not in general for finite three-dimensional containers, not 
even for the sphere. Section 3 deals with rotating fields and again V x (j x B) is steady 
only in infinitely long cylinders. The solution of the Navier-Stokes equations to find 
the flow generated by such a steady vorticity source presents a difficult nonlinear 
problem. In Moffatt's circular cylinder the streamlines are circular so the inertial 
forces are balanced by a radial pressure gradient and a simple solution is possible. 
Section 4 analyses the flow produced by a rotating field in a slightly distorted circular 
cylinder, in which case it is possible to linearize the boundary-layer equations and 
obtain a perturbation solution. 

2. Container of conducting fluid in a rapidly alternating magnetic field 
The magnetic Jield 

An arbitrarily shaped closed container of homogeneous fluid with electrical con- 
ductivity a is placed in an alternating magnetic field Re{B, eint}, B, being a constant 
vector. We assume that the space outside the container is non-conducting and that 
the magnetic Reynolds number of the flow is small. If Re{B eint} and Re{B* etnt} 
are the magnetic fields inside and outside the fluid then 

V.B = V.B* = 0, 

i!2B = hV2B ( A  = I / p o r ) ,  
V X B *  = 0, 

B = B* on S,  (2.4) 

(2.5) B* -+ B, at large distances from the container. 

S is t,he closed surface of the container. 
Suppose that the magnetic field is alternating rapidly, i.e. that the period of oscil- 

lation is small compared with the magnetic diffusion time scale of the container. In the 
time 27r/!2 required for one oscillation the field will diffuse into the fluid a distance of 
order (h/!2)* = 2-4 a,, say, so the magnetic field in the fluid will be confined to  a thin 
layer of width 8, around S. If L is a typical diameter of the container the assumption 
of rapid oscillation is equivalent to assuming S,/L = c < 1.  

For the calculation of the magnetic field we shall use the following co-ordinate 
system. Let ( p ,  q )  be an orthogonal co-ordinate system on S such that the co-ordinate 
lines are lines of curvature. The equation of S can then be written in the parametric 
form x = x,(p,q). A point X is assigned co-ordinates (p ,q , r )  as follows. Let Y be 
the foot of the perpendicular from X to S. ( Y is unique provided that S is sufficiently 
close to S.) Then ( p ,  p) are the co-ordinates of Y on S and r = Y X  (figure 1) .  

The position vector x of the point. with co-ordinates ( p ,  q, r )  is given by 

x = XAP, a )  + rfi, 
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FIGURE 1 

where N(p, q )  is the inward unit normal to S at (p, q).  Now 
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where s (p )  measures arc length along thep co-ordinate line, K,  is a principal curvature 
and en = ax,/as is a unit vector along thep co-ordinate line. Similarly, it can be shown 
that 

Equations (2.6)-(2.8) show that ( p ,  q, r )  is an orthogonal co-ordinate system (e, and 
eq being perpendicular since lines of curvature intersect at right angles) and that the 
scale factors are given by 

( I -rK,) l ,  h., = ldp as ( l - r K g ) l ,  h,= 1. 

We define a dimensionless orthogonal co-ordinate system (u, v, w) by setting 

where (dsldp),., is dsldp evaluated a t  some fixed point Yo on S. The scale factors are 
given by 

h, = h: L, h, = h; L, h, = a,, 
where h, and h; are the dimensionless functions 

K;, = LK, and K i  = LK,  being the dimensionless principal curvatures. 
In terms of dimensionless variables (2.1) becomes 
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If B is expanded as a power series in 8 of the form 

B = B , + E B ~ + C ~ B ~ + . . . ,  

the zeroth-order term of (2.9) is 

Since B -+ 0 as w -+ 03 (in the interior of the container) it follows that 

aB,/aw = 0. 

Bow = 0. (2.10) 

Equation (2.10) makes it possible in principle to determine the outer field B* to 
zeroth order. Equations (2.1) and (2.3) show that one can write 

B,* = V# with Vz+ = 0. (2.11) 

0 # . f 4 = 0  on S. (2.12) 

From (2.4) and (2.10) i t  follows that 

Equations (3.11) and (2.12) together with (2.5) determine B,* uniquely: in fact B,* is 
identical with the velocity field for irrotational flow of a uniform stream B, past a 
rigid obstacle of the same shape as the container. 

The zeroth-order part of (2.2) is 
h a2  

iQ(B0, e, +Boo e,) = P o ,  e, + Bo, eu). 

Using the definition of a,, this becomes 

(a2/aw2 - 2;) (Bou e, + B,, e,) = 0. 

The boundary conditions are 

B,, e, + B,, e, + 0 as w -+ co, 
@,ti =, + B,, e , )w= 0 = B,, 

where B, is the value of B* on S determined from (2.11) and (2.12). The solution is 

B, = Bhe,+Bo,e, = B,exp[-w(l+i)], (2.13) 

so if B, denotes the magnetic field in the interior of the fluid 

where y = Qt - w. 

first-order term of (2.9) is 

B,, = B, e-w cos (at - w) = B, e-, cosy, say, (2.14) 

For the calculation of the curl of the Lorentz force it is necessary to find Blw. The 

Substituting for B,,, and B,, from (2.13) gives 

= - 0;. B,exp [ - w( 1 +i)], say, 
where 0; represents a non-dimensional surface gradient operator. B,, -+ 0 as w +- co so 

Thus 
(Bzl)w = 2-*V$. Bse-u’cos (?-an). (2.15) 
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The rate of uorticity generation 
The zeroth-order component jo of the current density j = pol V x B is found from 
(2.14): 

26 j, = - 
PO ' B  

(2.16) 

The important terms in the body force F = j x B are F,,, F,, and Flv. Each gives a 
contribution of the same order of magnitude to V x F since Fo, is differentiated with 
respect to u and u whereas F,, and F19 are differentiated with respect to w. Equations 
(2.14)-( 2.16) give 

(2.17) 

(2.18) 

(Note that j,, = ,u;llV x B,J e-w cos y = 0 since there is no normal current flow 
across S, so V x B, = 0.) Evaluating V x F from (2.17) and (2.18) gives 

(V x F)o = 
1 

v $ ( B ~ )  x e, (cos (2y + 2) + 2-61 e-2w 
26 PO ' B  

d + (B ,  x e,) - {e-w cos 2y>. 
'PO ' B  dw 

This can be written as the sum of a constant term and an oscillatory term as follows: 

1 
e-2w VL(B$) x e,  + 1 ( V X  F), = - 

'PO ' B  28 PO ' B  

x {VL(B$) x e,- 2(Vk. B,) B, x e d .  (2.19) 

Xpecial cases 
(i) The infinitely long cylinder. Suppose that the container is an infinitely long 

cylinder of uniform cross-section and that the applied magnetic field B ,  is normal to 
its generators. If the z axis is chosen parallel to the generators and s measures arc 
length around the cross-section of the cylinder then we may take u = s / L  and u = - z/L. 
By symmetry we must have B, = B,(u) e,, so 

V i  (Bi )  = 2B, dBS du e,, (0;. B,) B, = B, dBS  - e,. 
d u  

It follows that the oscillatory term of (2.19) vanishes and that 

e-2, B S Z  dBS er (2.20) 
1 

(V x F)o = - 
PO ' B  

In the case of a circular cylinder of radius a, for example, we use polar co-ordinates 
( r ,  0 )  with the x axis parallel to B A :  

B, = -2BAsin8e,. 
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FIGVRE 2 

Ifwe set L = a then u = 0 and 

(V x F), = - 2B' e-zw sin 20 e,, 
POa6, 

which is identical with equation (4.4) in Sneyd (1971), where p = as1. 
(ii) A body of revolution. Suppose that S is obtained by rotating a curve C about an 

axis parallel to B, (figure 2 ) .  If s measures arc length along C and $ is the azimuthal 
angle of rotation about the axis then one can set u = s / L  and v = $. Also, h: = 1 and 
hk = h(u)/L, where h(u) is the perpendicular distance to the axis. By symmetry 
B, = B,(u) e,, so 

V&(B$) = 2Bs- e, 

1 d  
h(u) du 

dBS 
du 

and 

(V& ~ Bs)B, = - - (WU) Bs) B, eu- 
Substituting in (2.19) gives 

The rate of vorticity generation is not steady unless h(u) is constant. 

( r ,  8, $) with the axis parallel t o  B,, 
Consider, for example, a sphere of radius a. In terms of spherical polar co-ordinates 

B, = - $BA sin 8 ee. (2 .22)  
With L = a, 

and 
(Vh . B,)Bs = $B% sin 28 ee 

so 
9B5 e-zw sin 28 cos (27 + z) eg. 

9B; (V x F), = ~ e-Zw sin 28 e 
8Pu, &,a g-4x 2 t p 0 6 B a  
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The exact solution for the sphere is 
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where 

When the Bessel functions are replaced by their large argument asymptotic expansions 
the expression for B is identical with that obtained by substituting (2.22) into (2.14) 
and (2.15). 

hTecessary condition for steady vorticity generation 
The results just derived lead one to suspect that it is only in the case of an infinite 
cylinder that the rate of vorticity generation is steady, and this in fact turns out to 
be true. 

It follows from (2.19) that (0 x F), is time independent only if 

V,(Sg) = 2(Vs. B,) B,. 

Since there is no normal current flow across S 

so that 

(2.23) 

(2.24) 

One can construct an orthogonal co-ordinate system (6, a)  on S by letting the g co- 
ordinate curves be field lines of B, and the 7 co-ordinate curves level cuives of x. Then 
B, = B,e, and (2.23) shows that V,B, is parallel to B,, which implies that B, is a 
function of < only, A(g) ,  say. Thus 

Substitution of this expression in (2.23) and (2.24) yields respectively 
B, = A ( [ )  4. 

ah,liit = 0, ah,/ar = 0. 

The Gaussian curvature h' of S is given by the formula 

(2.25) 

K=-" a ( 1 ah, )+-(--)I a i ah, 
h,h5 &z 87 h, 

(see, for example, Spivak 1970, p. 322) and it follows that 

K = 0 on S.  

It is a well-known result in differential geometry (see, for example, Spivak 1970, 
theorem 9, p. 363) that the only 'flat' surfaces, i.e. surfaces with Gaussian curvature 
everywhere zero, are infinite cylinders, so steady vorticity generation is possible only 
in this case. For the 'flat' surfaces the magnetic field and electric current are per- 
pendicular and 90 O out of phase, giving a steady V x (j x B). For any finite closed 
surface, the extra curvature which it must necessarily possess makes this configuration 
impossible. 

Even in the case of a cylinder the vorticity generation rate is constant only if the 
direction of the applied field is parallel or normal to the generators. For suppose that 
B, makes an angle a with the generators. In the notation of special case (i) 

B, = cos a B,(u)e, + B, sin a e, 
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so 

Evidently (2.23) can be satisfied only if a = 0 or IT. 
Bi  = cos2a!B2,(u) +B: sinza. 

3. Container of conducting fluid in a rapidly rotating magnetic field 
A rotating magnetic field can be represented by 

B = B, cos !A + B, sin at, 
where B, and B, are perpendicular vectors of equal magnitude. The effect of this 
field on a container of conducting fluid can be deduced from the results of the previous 
section. The differential equations and boundary conditions determining B are linear 
so (2.14) and (2.15) give 

B,, = B, eUu' cos y + B, ecW sin y, (3.1) 

(B,l)w = (V$. B,) 2-3 e-u' cos y- -  + (V$. BT) 2-4 e-w sin ( y -  1) - . 13.2) 

B,(u, v) is the counterpart of B, produced by B,. (BT is the surface value of a vector 
field which is irrotational and solenoidal outside S, has zero normal component on 8 
and tends to B,, at infinity.) Equation (2.16) gives the electric current density: 

( 3 

j -- " e- [ B, cos (y  + i) + B, sin (y  + i)] x e,. 
PO ' B  

0 -  

The Lorentz force j x B is quadratic in B so one can write 

F = F,+F,+F,, 
where F, and F, are the terms involving only B, and B,, and F, represents the 
cross-product terms: 

23 F, = - 
'PO 6B 

€ 

'PO ' B  
-- e-2W[(sin3y- 1)(V$.BT)B,+(sin2y+ l)(Vi.B,)B,] 

and 

[V,&(B,.B,)-(V$.B,)B,- (Vb.B,)B,] 
24 e-2tr 

PQ'BL 
V x F , = -  

e-2W 

x e,,+- [(V$.B,)B,-(V$.B,)B,] x e,. (3.3) 
PO ' B  

V x F, is given by the right-hand side of (2.19) and V x F, is the same expression 
with B, replaced by B, and the sign of the oscillatory term reversed. 

The sphere 
We use spherical polar co-ordinates witlh the z axis parallel to the axis of rotation. If 
the applied rotating field is 

B,icosQt+B,jsinQt 
then 

B, = #BA[cos 8 cos Q e, - sin Q e6], 
B, = QBA[cos 8 sin Q e, + cos Q ea]. 
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Substituting these expressions in (2.19) and (3.3) gives 
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9B: e-2w (V x F), = - [sin 28 e6 + 4 sin 8 e,] 
8Po 6, a 

This expression is different from that given by Nigam (1969) in his equation (3.1). The 
reason for the difference is that  Nigam has incorrect expressions for the magnetic 
field in his equations (2.19). A factor of + is missing from (2.19b) and (2.19~) .  (It is 
easily verified that Nigam’s expression for B is incorrect since it does not satisfy 
V.B = 0.) The omission of this factor of Q leads to a spurious cancellation of the 
oscillatory terms in Nigam’s expression for V x F. 

The inJinite cylinder 
For an infinitely long cylinder of uniform cross-section with the magnetic field rotating 
about an axis parallel to its generators we use the co-ordinate system u = s /L ,  
v = -x/L,  u7, as in § 2. It follows from symmetry that 

BS = BS(u) eu, BT = BT(u)  eu 
so 

V$(Bs.BT)-(Vk.Bs)BT-(Vi.BT)Bs 
dB B - dB -TBs] e,  = 0. 

- - d , ( B S B T ) - x  T du 
Equations (3.3) and (2.20) give 

Moffatt (1 965) conjectured that for a cylinder of arbitrary cross-section V x F might in 
general include an oscillatory term, but (3.4) shows that it is always time independent. 
Moffatt also conjectured that the magnitude of V x F would be proportional to  the 
curvature of the cylinder surface but (3.4) illustrates a more obscure dependence on U. 

For a circular cylinder of radius a, 

B, = - 2B,sin8eB, B, = 2BAcos8e,. 

Substitution in (3.4) gives 
4B5 e-2u1 

(V x F), = e,. PO 6, a 
This is equivalent to  equation (2.15) of Moffatt (1965), where k = l /BB and the factor 
1/4n appears because of different electromagnetic units. 

Necessary condition for  steady vorticity generation 
The curl of the Lorentz force is given by 

V x F = V x Fs+V x FT+V x Fc. 
The time-dependent parts of V x F, and V x FT are proportional to cos (By + in) 
and that of V x Fc is proportional to sin (2y + an) so cancellation between these is 
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impossible. It follows that V x F is steady only if both V x F, and V x F, are. As 
shown in $ 2 ,  this implies that the Gaussian curvature of S is everywhere zero, and 
that steady vorticity generation occurs only in the case of the cylinder. 

The slightly distorted circular cylinder 
Consider the cylinder 

r = a[l + Sf(S)] = rs, say (3.5) 

(cylindrical polar co-ordinates), where 

and 
6 4  1 

f(8) = (a, cosn0 + b,  sin no) = C a, eino (ao = a+, = 0). 
co 03 

n = 2  n=--m 

(The n = 1 terms are neglected inf(8) since they correspond simply to a displacement 
of the centre, and in fact provide no contribution to the rate of vorticity generation.) 

Define $ to be the solution of the problem 

Vz$ = 0, ( V $ . n L r S  = 0, 
$+BAreio as r - f m ,  

where n is a unit normal to the cylinder surface. Then 

(V$.eu)r=rLs = B,+iB, = S(u),  say. 
It follows that 

I d  dBT B dBs B - - ( B g + B $ ) + -  ,-- , = R e  
2 du du du 

We expnd  $ and S as power series in 6 of the form 

$ = Qo+6$,+62$,+... ,  s = SO+6S,+&2S2+ ... . 
Now 

$o = BA(r + a/.) eie, 

so satisfies the following equations: 

V2$, = 0, 

$ 1 + 0  as r+m, 

d 
= 2B,i a [ f (8)eie] .  

The solution is 
m a l  n+ll+l 

91 = 'B-4 C a n y l n + l l  sgn ( n +  1 )  exp [ i (n+ I ) @ ] ,  (3.7) 
n=-03  

and 

So = 2BA ieie, S,  = - 2BA if (8 )  e ie +:(%I . 
r = a  

Substituting into (3.4) using (3.6) and (3.7) yields 
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where 
00 

F(0)  = (n - 1) {an(3 cosn0- nsinnd) + b,(3 sinnB+n cosn0)). (3.9) 
n=2 

r = a (1 + 6 cos 20) approximately represents an ellipse of small eccentricity. Accord- 
ing to (3.8) the rate of vorticity generation in a cylinder of this cross-section is 

4B: e-2w 4B5 ecZw 
[ 1 + 6( 3 cos 28 - 2 sin 2/41 = 

PO 'B a POaBa 
[ 1 + 6134 cos (20 +a)], 

where 01 = t a r 1 #  = 33.7". This illustrates the falseness of Moffatt's conjecture that 
the rate of vorticity generation is proportional to the curvature. IV x FI attains its 
maximum when B = - 16-8 or 163.2". 

The magnetic field strength on the cylinder surface is 

B,cos Qt + B,, sin Qt = A cos (at- a), say. 

The expression (3.4) for the rate of vorticity generation can be re-written in terms of 
the magnitude A and the phase a as follows: 

(V x F)o = ~ (3.10) 

It can be seen from (3.10) that IV x FI depends upon A ,  dA/du and daldu. In the case 
of a circular cylinder A = 2B, and a = u so IV x F( is uniform. For an elliptic cylinder 
of small eccentricity 

A = 2BA(1 +SCOSZ~)+O(&~) ,  
daldu = 1 + 28 cos 20 + 0(d2). 

In this case all three terms A ,  dA/du and daldu vary with u. A and daldu attain a 
maximum a t  0 = 0 and d A / d u  at  8 = in. Their combined effect is maximum at some 
intermediate point, which explains the asymmetry of the point of maximum vorticity 
generation. 

4. Flow induced in a slightly distorted circular cylinder by a rotating 
magnetic field 

General remarks 
Moffatt's solution for the flow in a circular cylinder due to a rotating field includes no 
inertial effects since the streamlines are circular, so it is of interest to study non-circular 
cylinders. To obtain a tractable problem we suppose that the cylinder is only slightly 
distorted from a circular shape, in fact that its surface is described by (3.5). This 
perturbation analysis is similar to that by Wood (1956) of boundary layers with closed 
streamlines. 

The rate of vorticity generation is given by (3.8) and our aim here is to calculate 
the steady flow produced. The flow can be divided into two regions (figure 3): an inner 
region I where no body forces act and a boundary layer I1 where magnetic and viscous 
forces are important. 

We shall suppose that the Reynolds number R = Ua/v  for the flow in the inner 
region is large. (For mercury in a container of radius 10-1 m, R 9 1 if U 9 m/s, 
which is the only situation of physical interest.) As suggested by Moffatt (1965), the 
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FIGURE 3 

flow there can then be found using a result of Batchelor (1959) which shows that the 
vorticity must be uniform if one assumes the streamlines in the interior are closed. 
Thus if $ I  is the stream function in region I we have 

V2@., = wI (a constant), 
$ I  = 0 a t  r = a[ l  +&f(O)]. (4.1) I 

TO first order in 6 the solution of (4.1) is 

the constant wI being determined by the boundary layer. 

Boundary-layer equations 
Region 11 includes two boundary layers: a magnetic layer of thickness 6, and a 
viscous layer of thickness &, say, where 

a;? = v a / U ,  

in which U = BI 6i / (2ppO V U )  (4.3) 
is typical flow speed in the boundary layer. We define S,, the overall boundary-layer 
thickness, to be the maximum of 6, and av and set k = S,/S,. aLr and 8, are determined 
by the zeroth-order Moffatt solution and are independent of S. 

It can be seen, €or example by integrating the Navier-Stokes equation around a 
closed streamline passing through the boundary layer, that the rotational Lorentz 
force can be balanced only by viscous forces, so in the magnetic boundary layer viscous 
and magnetic forces must be of the same order of magnitude. I f  av > 6, the inertial 
forces there are smaller than this common magnitude and if 8, > cYv they are larger. 
In  theory the ratio 6,/dV can be varied arbitrarily (for example by changing the 
magnetic field intensity and rotation speed) but in practice one would expect the 
regime 6, > 6 ,  to be unstable. The Taylor number T for the magnetic boundary layer 
is given by equation (3.1) of Moffatt (1965), and algebraic rearrangement shows that 

T = ~ ' 6 ~ / 6 ~ ~ .  
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FIGURE 4 

Moffatt argues that instability of the boundary layer would be expected for T > a x lo3 
(ct being a number of order of magnitude 1) so i t  follows that 6, cannot be much larger 
than &. Further evidence of the instability of this regime is given later in this section. 

We define e* = S,/a and shall suppose that 6 % e*, i.e. that  in the change from a 
circular to a slightly non-circular cross-section the cylinder walls have been perturbed 
through a distance which is large compared with the boundary-layer thickness 6,. 

Essentially the same co-ordinate system as in 5 2 will be used. s is arc length around 
the surface of the cylinder and d is perpendicular distance from the surface (figure 4). 
If one sets u = s /a  and v = d/6, = w/k then (u, v) is an  orthogonal co-ordinate system 
with scale factors 

K' being a dimensionless curvature. 
If $' is the stream function for the boundary-layer flow a dimensionless stream 

function is defined by $ = $ I / (  USL) .  Then $, the fluid velocity and the fluid vorticity 
are expanded its power series in 6 of the form 

h,, = (1 - €* K'V), h ,  = aL7 

$ = $0+6$1+62$2+ ..., 
u = U,+6Ul+S%lz+ ..., 
0 = o,+s01+6202+ ... . 

To first order in 6 the curl of the steady Navier-Stokes equation is 

v x (0, x u,) +sv x (ol xu,) + 6 V  x (0, x ul) 
= (4B~e-2k"/ap,6B)[1 + S F ( O ) ] e , - v V x  V x (w,+6wl). 

According to Moffatt ( 1  965) 
u, = U ( 1 -  e-2ku) etL. (4.4) 

Substituting (4.4) into the vorticity equation gives 

Equation (4.3) ensures that the zeroth-order part of (4.5) is satisfied. Since 0 = u + O(6) 
the first-order terms of (4.5) give 

where R, = U6;/av is the boundary-layer Reynolds number. If one writes 
m 

$1 = Re[fn(ti)einO] 
11= '2 
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(4.6) becomes a sequence of ordinary differential equations : 

niR,[(e-2kt'- l)f:,-4k2e-2k7'fn] = 8k3A,e -2ke -_ f2v )  ( n  = 2, 3, ...), (4.7) 

where 
A ,  = (n- 1)[a,(3+in)+bn(n-3i)] .  

Natching the core region with the boundary layer 
I n  (4.2), wI will be a function of 6 and can be expanded in the form 

W I  = W I 0  + SW,, + Pw,, + . . . . 
The flow speed qI a t  the outer boundary of region I can be calculated from (4.2): 

W 

qI = $a,@, - t w I  a,6 s (na, cos no + nb, sin no), 

qr = +awIo + $as [ wI1 - wIo c (nu, cos no + nb, sin no) + o(P). 

n=2 
or 

( 4 4  1 W 

n =  2 

qI must be equal t,o the flow speed at the inner edge of the boundary layer so 

I) m 

(4.9) 

Comparison of (4.8) and (4 9) gives 

(oIo  = 2U/a  = B: 6i/(p,uoa2), wI1 = 0, (4.10a, b)  

f A ( . o )  = - n ( a ,  - ib,) = F,, say. ( 4 . 1 0 ~ )  

The first of these equations is equivalent to equation (2.20) of Moffatt (1965). The 
second is analogous to  equation (12) of Wood (1956), which shows essentially that 
the first-order perturbation to the core flow is zero. 

Determination of fn (u)  

The fluid velocity must vanish on the cylinder wall so 

fn(0) = f A(0) = 0. (4.11) 

Equat,ion (4.7) can be integrated once with respect to v, giving 

niR, [(e-zkt - 1)  f A + 2ke~2kt.f~ + F,] = - 4k2 A, e-2ku -r:, (4.12) 

the arbitrary constant of integration being fixed by ( 4 . 1 0 ~ ) .  Equations ( 4 . 1 0 ~ ) -  
(4.13) now determine f,(v) uniquely. 

It is possible to find approximate solutions of (4.12) when aV 
Case 1:  13,. $ 6,. Since 6, = S,., R, = 1 and k = 

6, or 6, % &.. 
% 1.  The boundary layer 

divides into an inner region of thicliness k-l a t  u = 0 (the magnetic boundary layer) 
and an outer region. If one writes ek = k - l ,  (4.12) becomes 

2 - 4A, 
[exp ( - 2v/e,) - 11f; + - exp ( - 2v/e1i)fit + 17.1 = - exp ( - 2v/ek) -f:. 

Ek 4 
(4.13) 
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An approximate solution of (4.13) can be constructed by the method of matched 
asymptotic expansions and leads to the following uniformly valid expansion for fA(v) :  

(4.14) f ‘(v) = - A  e-2kt’ + ( A ,  - F,) e-Bz> + F ,  [p = (1  + i) ( & L ) & ] .  

For the elliptic cylinder r = a( 1 + 8 cos 20), 

fk(v) = - ( 3 + 2 i ) e - 2 k u + ( 4 + Z ~ ) e - ( l + ~ ) ~ -  1. 

Graphs of the real and imaginary parts of f ; ( z , )  are drawn in figure 5. These represent 
respectively the boundary-layer velocity profiles a t  0 = 0 and 0 = &r. 

In this regime inertial forces are unimportant in the magnetic boundary layer, 
where the first-order variation in the flow is due to the first-order Lorentz-force term. 
In the outer viscous boundary layer the important influences on the first-order flow 
are viscosity, inertia and the perturbation in the core flow. The effect is an oscillatory 
velocity profile, the necessity for which was pointed out by Wood (1956, p. 82). 

Case 2: 6,  $ &. 6, = 6,, so k = 1 and R, $ I .  Equation (4.12) now becomes 

niR,[(e-2L’- 1)f’ n + 2e-2’f,+Fn] = - 4 A , e - 2 2 ’ - f [ .  (4.15) 

Finding an asymptotic expansion for f,(v) in terms of the small parameter Ril is a 
singular perturbation problem. There is a region of thickness O ( R z ; )  near v = 0 in 
which Rzlf will be of the same order of magnitude as f,. We set = RE* and (4.15) 
becomes 

in[(e-2t’-  l)f;,+ 2ec21‘f,+ Fn] = -4e&A,e-2z’-e$f~~.  (4.16) 

Again an approximate solution of (4.16) can be calculated by the method of matched 
asymptotic expansions, resulting in the following uniformly valid expansion forfA(u) : 

where 

Ai(x) being the Airy function of the first kind (defined, for example, on p. 446 of 
Abramowitz & Stegun 1965) and g(x) the solut’ion of the problem 

-x 1 
g”’ - xg’ + q = - +- - [2x Ai2(x) + x2 Ai,(x)], 

a 2ac, 

g(0)  = g’(0) = 0. 

a = (2n)feftin, C, = 3-f/r(4), Go = 0.1175fO.0134i 

Figure 6 shows graphs of the boundary-layer velocity profiles calculated from (4.17), 
which indicate the presence of a jet increasing in intensity as eR --f 0. It was pointed 
out earlier in this section that one might expect this regime to be unstable. The 
magnetic-boundary-layer Reynolds number is large and once the container departs 
from a pure circle inertia forces dominate both the viscous and the Lorentz forces 
(which are of the same order of magnitude). The most important dynamic effect in 
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FIGURE 5. Boundary-layer velocity profiles for case (i) ( 8 ~  + 8,). 

0 I .o 
FIGURE 6. Boundary-layer velocity profiles for case (ii) (8, 8"). 

A t O = O  

At 0 =an 

this boundary layer is the distortion of the zeroth-order (in 8) Moffatt profile. Thus 
(4.17) shows that the first-order profiles are independent of the first-order Lorentz-force 
term. 
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5. Discussion 
The precise conditions for the validity of the low magnetic Reynolds number 

assumption (R, < 1) can now be found. R,, = U L / h  and the typical flow speed U is 

where M = B, L(u/pv)& is the Hartmann number. Thus R, 4 1 provided that 
M < e-l. For mercury in a container of diameter 10-1 m this condition will be satisfied 

B, < lose-1 weber m-2. provided that 

Since the strongest laboratory magnetic fields have intensity of order 1 weber m-2 
it seems inevitable that R, < 1. 

The results of 5 2 show that an alternating or rotating field will produce a steady 
vorticity source only in infinitely long cylinders of uniform cross-section, SO V x F 
will always in practice be time dependent. An oscillatory term in V x F will give rise 

Cl = eBf /ppo  SZS, to an oscillatory flow of order 

(tJhe dominant term in the momentum equation for this flow being piiu/i?t for large 
Q). The ratio 

is the magnetic Prandtl number, which is very small for liquid metals ( lo-’ for mercury). 
This oscillatory flow is likely to be weak, as pointed out by Moffatt (1965). 

The calculation of the boundary-layer flow in case (ii) (S,$ 6 , )  and consideration 
of the Taylor number seem to indicate that this regime will be unstable. A tur- 
bulent flow could develop, or a laminar flow of more complicated geometry with flow 
in and out of the boundary layer could be established. 

U1/U = l,/h = P 

I am very grateful to Professor G. S. S. Ludford for his help in the preparation of 
this paper. Professor Ludford suggested t o  me the analysis of a slightly distorted 
circular cylinder and derived (3.8) and (3.9). 
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